テクノロジー
全数検査のメリット・デメリットと導入のポイント
製造工程で製品の不良を取り除くには、全数検査を実施するのが理想です。近年ではIoTやAI(人工知能)技術を活用した新しい全数検査も可能になっています。しかし、全数検査にはメリットがある一方、デメリットもあります。全数検査のメリット・デメリット、導入のポイント、今後の全数検査についての展望などについて解説します。
全数検査とは
検査とは製品(または部品)の品質特性を測定し、規定に適合しているかどうかを判定する作業を指します。そして全数検査とは、製造工程の中で対象となる製品を一つ残らず検査する検査法です。
全数検査以外の検査方法としては抜き取り検査があります。抜き取り検査の場合は、対象となる製品のロットの中から一部をサンプルとして抜き取って試験し、その結果によってロット全体の合否を決めます。また、製造工程の品質情報や技術情報に基づいて、サンプルの検査も行わない無検査(無試験検査)という方式もあります。
全数検査のメリット・デメリット
全数検査のメリットは、すべての製品を検査して不良品・異常品を取り除くことにより、当該ロットの品質を完全に保証できることにあります。判定そのものをミスしない限り、市場における不良品や異常品が発生する確率を限りなくゼロに近づけられます。
一方、デメリットは検査のためにコストと時間がかかることです。とくにボルトやナットのような安価で数量の多い製品で全数検査を行うのは費用対効果が見合わず、現実的ではありません。また、製品を長時間稼働させて行うような耐久検査、外力を与えて強度を調べるような破壊検査、引張試験などが必要な場合も、製品・部品の価値が失われるため全数検査はできません。
全数検査導入のポイント
全数検査を導入する際は、そのメリットを十分に得られ、デメリットを排除できるのかどうか対策を検討します。具体的に、全数検査が必要または適しているのは次のような場合です。
不良が重大な危害をもたらす場合
不良が一つでも発生すると人命に危険が及ぶような製品では品質管理を徹底する必要があり、必ず全数検査を行わなければなりません。例えば自動車のブレーキやエアバッグ、医療機器などは、不良や不具合があると消費者に重大な危害をもたらす可能性があると考えられます。
全数検査による費用対効果が認められる場合
高額な製品であれば、コストと時間をかけて全数検査をしたとしても、十分な費用対効果を得られる可能性があります。また、出荷した製品に不良が発覚した場合に、その対応にかかる費用が全数検査のコストを大きく上回るという場合も、全数検査を実施するほうが適しています。
簡単に全数検査ができる場合
全数検査にそれほどコストや時間、手間がかからず、簡単にできるのであれば、全数検査をしたほうが良いということになります。
例えば食品の場合は、金属類やガラス片などの異物の混入を防ぐためのX線異物検出機や金属探知機を使った全数検査が行われます。これは異物混入が消費者に重大な危害をもたらす可能性があることや、万一、異物混入が生じると製品の全回収など多大なコストがかかるということもありますが、同時に機械を使って比較的簡単にチェックができることも理由として挙げられます。
センサーや画像処理システムの活用で全数検査が容易に
近年、IoTとAI技術を組み合わせた検査装置、検査システムが登場し、従来とは違った形の全数検査が可能になってきています。
例えば工場内の製造用機械に接続したセンサーから製品や部品の状態に関するデータを収集し、機械学習によって品質データとの相関関係を把握すれば、品質を見分けるためのアルゴリズムを構築できます。このことにより、品質の良否を判定するシステムとして運用することが可能です。
他にも、カメラ(イメージセンサー)で収集した製品や部品の画像データをAI技術を使った画像処理システムで精査して、不良品を見つけて除外するといったシステムを作ることもできます。
IoTとAI技術を組み合わせた検査ソリューションの強みは、これまでは人の目と勘に頼って行っていた検査工程を高い精度で自動化できることです。検査スピードもアップします。
これまで全数検査のデメリットはコストがかかることとされてきましたが、IoTとAI技術を組み合わせた検査ソリューションの多くは安価なコストで導入できる可能性があり、少なくとも人手に頼る全数検査よりもコストを抑えられるでしょう。
センサー、画像処理システム、IoT、AI技術などの進化により、容易に全数検査を実施できる環境が整いつつあります。全数検査のメリット・デメリットに対する考え方も変えていく必要があるでしょう。
全数検査はメリット・デメリットを理解した上で導入を検討すべきです。しかし、IoTとAI技術を活用した全数検査を実施するのであれば、コストについてのデメリットは解消される可能性があります。また、全数検査をIoT化できれば、それをきっかけに各設備の異常検知や点検のIoT化、ひいてはスマート工場化へと発展させる道筋も見えてくるでしょう。これらを考慮した上で、全数検査の導入を検討してみてください。
あわせて読みたい
関連記事はこちら
Wi-Fi6とは? メリット・デメリットやほかのWi-Fi規格との違いなど
Wi-Fiは「Wi-Fi6」という規格が主流になってきました。最新規格の「Wi-Fi7」の策定も進められていますが、一般に普及するまでにはまだ時間が掛かるでしょ...
詳細はこちら
AIの転移学習とは? メリット・デメリットや活用例など
転移学習とは、AIの精度を高める手法のひとつです。転移学習を行うことで、従来よりも効率的に機械学習のプロセスを進められるようになります。この記事ではAIの転移学...
詳細はこちら
自然言語処理に使われるRNN(リカレントニューラルネットワーク)とは?
RNN(リカレントニューラルネットワーク)はAIを支える技術の一つで、自然言語処理などの分野で応用されています。人間の言語や画像データなどの内容を機械が認識する...
詳細はこちら
自然言語処理に使われるLSTM(長・短期記憶)とは?
LSTMは、AIが自然言語を処理する際に使われる仕組みです。従来のニューラルネットワークを改良して作られたLSTMは、文章の生成や音声認識などさまざまな技術に応...
詳細はこちら
CNN(畳み込みニューラルネットワーク)とは? わかりやすく解説
ディープラーニングの登場により、AIは飛躍的に進歩しました。そんなディープラーニングにはいくつかのアルゴリズムが存在しますが、そのなかでも画像認識の分野で用いら...
詳細はこちら
ディープニューラルネットワーク(DNN)とは? 基本を解説
近年のAIを語る上で「機械学習」や「ディープラーニング」などは欠かせない要素の一つです。それらと併せて聞く機会の多い用語として「ディープニューラルネットワーク(...
詳細はこちら
自然言語処理(NLP)とは? 仕組み・活用例など
昨今のAIの進歩は凄まじく、ビジネスの現場でもAIの活用が進んでいます。そんなAIを支える技術の一つに「自然言語処理(NLP)」が挙げられます。近年話題のCha...
詳細はこちら
大規模言語モデル(LLM)とは? 仕組みや種類・用途など
近年ではさまざまな生成AIが登場していますが、そのなかでも注目を集めているものが「大規模言語モデル(LLM)」を活用したものです。以前からコンピューターと対話す...
詳細はこちら
プロンプトエンジニアリングとは? プロンプトの構成や設計のポイントなど
ChatGPTをはじめとする生成AIは、いまや業務でも利用される機会が増えています。そんな生成AIを使いこなすために欠かせないものが「プロンプトエンジニアリング...
詳細はこちら
人工無能とは? 人工知能の違いなど分かりやすく解説
業界や業種を問わず、さまざまな場面で人工知能(AI)の活用が進んでいます。そんな人工知能と同様に「人工無能」も活用の幅が広がっており、注目を集めています。しかし...
詳細はこちら
PLMシステムとは? 機能や導入メリット・注意点など
PLMシステムは、主に製造業を営む企業で活用されているシステムです。PLMシステムを導入することで、製品の企画から販売終了までのプロセスを管理し、利益の最大化に...
詳細はこちら
AIロボットにはどのような種類がある? 活用事例も紹介
AIを搭載したプログラムで制御されるAIロボットが、ビジネスの現場や一般家庭などで活用され始めています。AIロボットは従来型のロボットよりも自由度が高く、さまざ...
詳細はこちら
AIで生成したものの著作権はどうなる? 注意したいポイント
AIを活用する場合、他者の著作権を侵害してしまうリスクに注意が必要です。AIを用いて文章や画像などを生成するだけでなく、AIの学習のために既存の著作物のデータを...
詳細はこちら
医療の現場でAI活用を進めるメリット・デメリット
AI(人工知能)は人間の知能を人工的に再現したもので、コンピューターでありながら自ら学び、収集するデータの量などに応じて成長が期待できるという特長があります。将...
詳細はこちら
RPAとAIの違いは? RPAとAIを組み合わせた活用についても解説
RPAはオフィスで行われている業務をソフトウェアロボットが担う、画期的な自動化ツールです。事務作業の効率化と生産性向上をもたらし、これまで人が端末(PCなど)を...
詳細はこちら
ノーコード開発とは? メリット・デメリットと選ぶときのポイントなど
2020年から小中学校・高校で段階的にプログラミング教育の必修化が進んだように、いまやプログラミングは一般教養として必要とされてきています。しかし、プログラミン...
詳細はこちら
Web3.0(Web3)とは? わかりやすく解説
インターネットは1990年代から急速に発達し、現代では私生活・業務を問わず誰もが当たり前に利用するものとなりました。そんなインターネットはさらに進化しようとして...
詳細はこちら
セマンティックセグメンテーションとは? 仕組みや技法など
近年、さまざまな場面でAIの活用が進んでいますが「第三次人工知能ブーム」として、ディープラーニング(深層学習)による画像認識技術の向上がきっかけとなっています。...
詳細はこちら
AI文字起こしとは? メリットや活用のコツなど
いまやAIは、さまざまな業務において効率化の手段として活用されています。AIにもさまざまな種類が存在しますが、そのなかでも音声データからテキストを作成する「AI...
詳細はこちら
画像生成aiとは? 仕組みや人気ツールなどを解説
「イラストは絵心のある人にしか描けない」という時代は終りを迎えたかもしれません。作成するイラストのイメージや雰囲気などを情報として与えるだけで、誰でも簡単にイラ...
詳細はこちら
ジェネレーティブAI(生成系AI)の活用事例を紹介
ジェネレーティブAI(生成系AI)という言葉は、2022年にアメリカの調査会社であるガートナー社が公表したことで注目を集めるようになりました。新しい用語なのでで...
詳細はこちら
対話型AIとは? できることやビジネスにおける活用のポイントなど
近年、AIは業務でも利用される機会が増えています。さまざまなAIが存在するなかでも、「対話型AI」は多くの方が触れたことがあるのではないでしょうか。しかし、対話...
詳細はこちら
ChatGPTとは? 始め方や賢い活用方法などわかりやすく解説
ChatGPTは、対話形式でAIが人間の質問に回答するジェネレーティブAI(生成系AI)の一種です。2022年11月にリリースされて以降、急速に利用者が増え、多...
詳細はこちら
生成系AI(ジェネレーティブAI)とは? ChatGPTやAI画像などまとめて解説
近年、ChatGPTをはじめとする「生成系AI(ジェネレーティブAI)」が注目されています。業務で利用する機会も増え始めており、気になっている方も多いのではない...
詳細はこちら
ローコード開発とは? ほかの開発方法との違いとメリット・デメリット
最小限のソースコードで業務アプリケーションなどを開発する「ローコード開発」という手法をご存じでしょうか。ローコード開発とは、どのようなもので、ほかの開発方法とは...
詳細はこちら
スマート農業とは? 仕組みやメリット・デメリットなど
さまざまな業界・業種でICT(情報通信技術)の活用が進み、近年では農業にもICTを導入するようになっています。ICTを活用した農業は「スマート農業」と呼ばれ、農...
詳細はこちら
スマートファクトリー事例と成功のポイント
情報化が進み、あらゆる情報をデータとして取り扱う昨今、工業の分野においても情報化が進められています。そんななか、最新の技術を活用する「スマートファクトリー」に注...
詳細はこちら
VRとは? 仕組みやビジネスにおける活用事例など
近年、注目を集める技術としてVRが挙げられます。ゲームや動画視聴などで利用されるイメージが強いVRですが、昨今ではビジネスでの活用も増えてきています。今後のビジ...
詳細はこちら
ビジネスにおけるメタバースの活用事例
インターネットが普及し、現実世界とは異なる世界である「ネットの世界」を利用することが一般的になった昨今、次世代の新たな仮想世界として注目されているものが「メタバ...
詳細はこちら
AIプラットフォームとは? 種類やメリット・デメリットを解説
AIプラットフォームとは、特定の機能を持ったAIを自社で開発したい場合に役立つシステムです。専門知識や開発経験が少ない企業であっても、AIプラットフォームを使う...
詳細はこちら
メタバースとは? メリット・デメリットや活用例など
インターネットが私たちの生活の一部として、なくてはならないものとなって久しい昨今、その次の段階として「メタバース」が世界規模で注目を集めています。メタバースにつ...
詳細はこちら
AIで異常検知! 取り入れるメリットや成功事例を解説
人的コストの削減やヒューマンエラーの抑制を期待して、AIによる異常検知の導入を検討している方は多いのではないでしょうか。AIは蓄積したデータを基に異常検知を行い...
詳細はこちら
AIチャットボットとは? 仕組みやメリット・デメリットを解説
カスタマーセンターなどの業務効率化を目的にAIチャットボットの導入を検討している方は、その仕組みやメリット、デメリットについて知っておく必要があります。AIチャ...
詳細はこちら
顔認証システムの仕組みと精度
現在ではスマートフォン(スマホ)のロック解除やオフィスの入退室管理など、幅広く導入されている顔認証システム。自社でも顔認証システムの利用を検討しているものの、仕...
詳細はこちら
デジタル・ガバメントの意味・目的や実行計画についてわかりやすく解説
政府が主導する「デジタルファースト」、「ワンスオンリー」、「コネクテッド・ワンストップ」を三原則とする「デジタル・ガバメント」という取り組みが具体化しつつありま...
詳細はこちら
ハイパーオートメーションのメリット・デメリットやRPAとの違いを解説
さまざまな技術やツールを組み合わせて、連動する複数の業務を自動化しようというのがハイパーオートメーションの基本的な考え方です。RPAに代表される業務自動化は近年...
詳細はこちら
音声UIとは? 押さえておくべきポイントや今後の展望について解説
音声を認識してコンピューターなどを操作できる「音声UI」が身近なものになりつつあります。音声UIとはどのような特徴を持つインターフェースで、どんなメリットとデメ...
詳細はこちら
ソサエティ5.0とは? 政府の取り組みや事例についても解説
国が提唱するソサエティ5.0は、未来の新しい社会像を描いたシナリオの一つです。しかしそれは遠い未来の話ではなく、すでに始動している技術の延長線上にある、少し先の...
詳細はこちら
炎上対策にも効果的? AIによるSNS監視
SNSの普及によって、個人が自由に意見を発信する機会が増えました。ときには企業への批判がなされ、それが簡単に拡散してしまうケースもあります。そこで企業は、自社の...
詳細はこちら
AI活用における倫理問題とは? 企業は何に留意すべきか
次世代のテクノロジーとして注目されている「AI(人工知能)」をビジネスに導入する際、私たちはその正しい活用をめざしてさまざまな問題に対処しなければなりません。こ...
詳細はこちら
自動運転レベルとは? 現在はどこまで進んでいるのか
2020年現在、一部の運転操作が不要になる自動運転技術を搭載した車両が複数のメーカーから販売され、それに合わせて世界的に法律の改正が進められています。将来的には...
詳細はこちら
AI資格「人工知能プロジェクトマネージャー試験」について解説
人間に代わって思考や分析を行う「AI」。人工知能とも呼ばれていますが、AIをビジネスや業務で使うためには専門的な知識が必要になります。ここでは、AIのプロを育成...
詳細はこちら
AI技術によって実現した無人コンビニの仕組み
AIをはじめとした技術の発展により、世界中で無人コンビニの実証実験や導入が進んでいます。全国のコンビニが無人コンビニになればとても便利になると予想できますが、実...
詳細はこちら
AI(人工知能)のエキスパートシステムについて詳しく解説
AI、人工知能、機械学習といったワードが最近では当たり前のように使われるようになり、これらの技術は今後の技術革新において欠かせない存在になっているといえるでしょ...
詳細はこちら
テキストマイニングとは? 手法や活用法を解説
マーケティングへの活用や顧客満足度の向上、社内ナレッジの抽出などに役立つ「テキストマイニング」という手法をご存知でしょうか。データマイニングのなかでも、身近なテ...
詳細はこちら
データマイニングとは? AIとの関係についても解説
データマイニングは大量のデータのなかから有益な情報や価値ある知見を見つけ出す手法です。多くの企業がデータマイニングを活用し、マーケティングや結果予測に役立ててい...
詳細はこちら
人の心が分かる? 感情分析AIの仕組み
AIは論理的な思考によって答えを導き出すことは得意でも、人間の感情や気分、気持ちを察することはできないと思っている方が多いかもしれません。ところが今、「感情分析...
詳細はこちら
政府が推進する「AI Quest(課題解決型AI人材育成)」について解説
経済産業省が進める人材育成「AI Quest」をご存知でしょうか。わが国におけるAI人材の不足を解決するための試みで、年間2,000人のエキスパートレベルの人材...
詳細はこちら
エッジAIとは? 人工知能が産業にもたらす可能性
AIの活用が広がるにつれて注目を集めるようになったのが「エッジAI」です。従来の「クラウドAI」とは異なる特徴を持ち、とくに自動運転や産業用ロボット制御において...
詳細はこちら
MaaSとは? 日本での普及における課題
「MaaS」は未来の「移動」を革命的に変えることになるかもしれないキーワードです。欧米よりも遅れを取っているといわれる「日本版MaaS」の開発に向けて、鉄道会社...
詳細はこちら
押さえておきたい機械学習とディープラーニングの違い
AI(人工知能)技術について語るときによく耳にする「機械学習」と「ディープラーニング」。両者はどのように異なるのでしょうか。その仕組みや活用分野の違いなどについ...
詳細はこちら
AIによる画像認識の活用事例を紹介
さまざまなシーンでAI(人工知能)による画像認識が活用されています。画像認識技術は現在どのようなことに役立ち、今後、何を実現しようとしているのか、予測しきれない...
詳細はこちら
自動運転や産業機械の可能性を広げるミリ波レーダーとは
自動車の「ADAS(Advanced Driver-Assistance Systems:先進運転支援システム)」や自動運転に詳しい人なら、「ミリ波レーダー」が...
詳細はこちら
シンギュラリティとは? どのようにAIを活かしていくのか
AI(人工知能)の開発が進んで広く知られるようになり、「シンギュラリティ」という概念についても強い関心を寄せられるようになりました。2045年にAIの発達によっ...
詳細はこちら
AI(人工知能)を活用しよう! ビジネスにおける取り入れ方
ビジネスへのAI(人工知能)の活用はすでにさまざまな分野・現場で始まっています。AIと人間との関係性は今後どうなっていくのか、AIをビジネスに取り入れるためのポ...
詳細はこちら
AI(人工知能)には何ができる? AIの種類を紹介
AI(人工知能)は今、新しい製品やサービスとして、少しずつ私たちの社会や生活に入り込んできています。AIとは何なのか、AIの種類にはどのようなものがあるのかなど...
詳細はこちら
量子コンピュータとは? メリット・デメリットを解説
量子コンピュータの開発が加速しています。実用化されれば、交通渋滞の解消、医薬品の開発、ビッグデータの解析、AIの開発などに大きな進展をもたらすと言われています。...
詳細はこちら